158 research outputs found

    Tropical rainforest bird community structure in relation to altitude, tree species composition, and null models in the Western Ghats, India

    Full text link
    Studies of species distributions on elevational gradients are essential to understand principles of community organisation as well as to conserve species in montane regions. This study examined the patterns of species richness, abundance, composition, range sizes, and distribution of rainforest birds at 14 sites along an elevational gradient (500-1400 m) in the Kalakad-Mundanthurai Tiger Reserve (KMTR) of the Western Ghats, India. In contrast to theoretical expectation, resident bird species richness did not change significantly with elevation although the species composition changed substantially (<10% similarity) between the lowest and highest elevation sites. Constancy in species richness was possibly due to relative constancy in productivity and lack of elevational trends in vegetation structure. Elevational range size of birds, expected to increase with elevation according to Rapoport's rule, was found to show a contrasting inverse U-shaped pattern because species with narrow elevational distributions, including endemics, occurred at both ends of the gradient (below 800 m and above 1,200 m). Bird species composition also did not vary randomly along the gradient as assessed using a hierarchy of null models of community assembly, from completely unconstrained models to ones with species richness and range-size distribution restrictions. Instead, bird community composition was significantly correlated with elevation and tree species composition of sites, indicating the influence of deterministic factors on bird community structure. Conservation of low- and high-elevation areas and maintenance of tree species composition against habitat alteration are important for bird conservation in the southern Western Ghats rainforests.Comment: 36 pages, 5 figures, two tables (including one in the appendix) Submitted to the Journal of the Bombay Natural History Society (JBNHS

    Notes from the Other Side of a Forest Fire

    Get PDF
    Although widely used as a tool in forest management across the world, causing fires is illegal in Indian forests. This article points out that the present understanding of fire as essentially disruptive has its antecedents in a colonial perspective that came from seeing the forest primarily as a source of timber. However, the practices of indigenous communities as well as the insights of ecological studies point to the importance of using fire in controlled ways to manage dry and deciduous forest ecosystems

    All-Male Groups in Asian Elephants: A Novel, Adaptive Social Strategy in Increasingly Anthropogenic Landscapes of Southern India

    Get PDF
    Male Asian elephants are known to adopt a high-risk high-gain foraging strategy by venturing into agricultural areas and feeding on nutritious crops in order to improve their reproductive fitness. We hypothesised that the high risks to survival posed by increasingly urbanising and often unpredictable production landscapes may necessitate the emergence of behavioural strategies that allow male elephants to persist in such landscapes. Using 1445 photographic records of 248 uniquely identified male Asian elephants over a 23-month period, we show that male Asian elephants display striking emergent behaviour, particularly the formation of stable, long-term all-male groups, typically in non-forested or human-modified and highly fragmented areas. They remained solitary or associated in mixed-sex groups, however, within forested habitats. These novel, large all-male associations, may constitute a unique life history strategy for male elephants in the high-risk but resource-rich production landscapes of southern India. This may be especially true for the adolescent males, which seemed to effectively improve their body condition by increasingly exploiting anthropogenic resources when in all-male groups. This observation further supports our hypothesis that such emergent behaviours are likely to constitute an adaptive strategy for male Asian elephants that may be forced to increasingly confront anthropogenically intrusive environments

    Forest Vegetation and Dynamics Studies in India

    Get PDF
    Forests across the globe have been exploited for resouces, and over the years the demand has increased, and forests are rather exploited instead of sustainable use. Focussed research on vegetation and forerst dynamics is necessary to preserve biodiversity and functioning of forests for sustanence of human life on Earth.This article emphasis that the India has a long history of traditional knowledge on forest and plants, and explorations from 17th century on forests and provided subsequent scientific approach on classification of forests. This also explains the developments of quantitative approach on the understanding of vegetation and forest diversity. Four case studies viz., Mudumalai, Sholayar, Uppangala, Kakachi permanent plots in the forests of Western Ghats has been explained in detail about their sampling methods with a note on the results of forest monitoring. In the case of deciduous forests, the population of plant species showed considerable fluctuations but basal area has been steadily increasing over time, and this is reflecting carbon sequestration. In Sholayar, a total of 25390 individuals of 106 woody species was recorded for < 1 cm diameter at breast height in the first census of the 10 ha plot in the tropical evergreen forest. In Uppangala, 1) a 27- year long investigation revealed that residual impact of logging in the evergreen forests and such forests would take more time to resemble unlogged forests in terms of composition and structure; 2) across a similar temporal scale, the unlogged plots trees < 30 cm gbh showed a more or less similar trend in mortality (an average of 0.8% year-1) and recruitment (1%). The Kakachi plot study revealed that 1) endemic species showed least change in stem density and basal area whereas widely distributed species showed greater change in both; 2) The overall recruitment of trees was 0.86 % per year and mortality 0.56% per year resulting in an annual turnover of 0.71% ; 3) majority of the gap species had high levels of recruitment and mortality resulting in a high turnover.Such studies can be used as early warning system to understand how the response of individual plants, species and forests with the climatic variability. In conclusion, the necessity of implementation of national level projects, the way forward of two such studies: 1) impact of climate change on Indian forests through Indian Council of Forestry Research and Education (ICFRE) colloborations and 2) Indian long term ecological observatorion, including the sampling protocols of such studies. This will be the first of its kind in India to address climate change issues at national and international level and helps to trace footprints of climate change impacts through vegetation and also reveals to what extent our forests are resilient to changes in the climate

    BRCA1: linking HOX to breast cancer suppression

    Get PDF
    Homeobox (HOX) genes play key roles in embryogenesis and tissue differentiation. Recently, a number of groups have reported altered HOX gene expression in breast cancer. However, the mechanism of HOX gene regulation and the search for direct targets of its transcriptional regulatory function have been minimally fruitful. Recently, Gilbert and colleagues reported that HOXA9 restrains breast cancer progression by upregulation of BRCA1, a tumor suppressor. This finding raises our hope that more, rather elusive targets of HOX genes important in tumor progression or suppression will be found in the future

    Nonrandom processes maintain diversity in tropical forests

    Get PDF
    An ecological community\u27s species diversity tends to erode through time as a result of stochastic extinction, competitive exclusion, and unstable host-enemy dynamics. This erosion of diversity can be prevented over the short term if recruits are highly diverse as a result of preferential recruitment of rare species or, alternatively, if rare species survive preferentially, which increases diversity as the ages of the individuals increase. Here, we present census data from seven New and Old World tropical forest dynamics plots that all show the latter pattern. Within local areas, the trees that survived were as a group more diverse than those that were recruited or those that died. The larger (and therefore on average older) survivors were more diverse within local areas than the smaller survivors. When species were rare in a local area, they had a higher survival rate than when they were common, resulting in enrichment for rare species and increasing diversity with age and size class in these complex ecosystems

    Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models

    Get PDF
    Tropical forests vary substantially in the densities of trees of different sizes and thus in above-ground biomass and carbon stores. However, these tree size distributions show fundamental similarities suggestive of underlying general principles. The theory of metabolic ecology predicts that tree abundances will scale as the -2 power of diameter. Demographic equilibrium theory explains tree abundances in terms of the scaling of growth and mortality. We use demographic equilibrium theory to derive analytic predictions for tree size distributions corresponding to different growth and mortality functions. We test both sets of predictions using data from 14 large-scale tropical forest plots encompassing censuses of 473 ha and \u3e 2 million trees. The data are uniformly inconsistent with the predictions of metabolic ecology. In most forests, size distributions are much closer to the predictions of demographic equilibrium, and thus, intersite variation in size distributions is explained partly by intersite variation in growth and mortality. © 2006 Blackwell Publishing Ltd/CNRS
    corecore